Power-law radon-transformed superimposed inverse filter synthetic discriminant correlator for facial recognition

نویسندگان

  • Bahareh Haji-Saeed
  • Jed Khoury
  • Charles L. Woods
  • John Kierstead
چکیده

A power-law correlation based on an inverse filter Fourier-Radon-transform synthetic discriminant function (SDF) for facial recognition is proposed. In order to avoid spectral overlap and nonlinear crosstalk, superposition of rotationally variant sets of inverse filter Fourier-transformed Radon-processed templates is used to generate the SDF. For the inverse filter, the Fourier transform of M projections (Radon Transform) from one training image is combined with (N-1) M Fourier transform of M projections taken from another N-1 training image. This synthetic SDF filter has a very high discrimination capability; however, it is not noise robust. To overcome this problem, a power-law dynamic range compression is added to the correlation process. The proposed filter has three advantages: (1) high discrimination capability as an inverse filter, (2) noise robustness due to dynamic range compression, and (3) crosstalk-free nonlinear processing. The filter performance was evaluated by established metrics, such as peak-to-correlation energy (PCE), Horner efficiency, and correlation-peak intensity. The results showed significant improvement as the power-law filter compression increased.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Recognition Algorithms based on Transformed Shape Features

Human face recognition is, indeed, a challenging task, especially under the illumination and pose variations. We examine in the present paper effectiveness of two simple algorithms using coiflet packet and Radon transforms to recognize human faces from some databases of still gray level images, under the environment of illumination and pose variations. Both the algorithms convert 2-D gray level...

متن کامل

3D Face Recognition Using Radon Transform and Factorial Discriminant Analysis (FDA)

Automatic recognition of human faces is considered to be a challenging task despite significant progress in both computer vision and pattern recognition. A facial recognition system is a computer application of automatically identifying or verifying a person from a digital image or a video frame from a video source. Typical variations such as in-depth pose changes or illumination variations inc...

متن کامل

Recognition of Face Expression using Color Space

Face expression recognition can be stated as „identifying the expression of an individual from images of the face‟. Most of the existing systems of facial expression recognition focus on gray scale image features. This paper describes the novel approaches for effectively recognizing the facial expressions. In facial expression recognition (FER) framework, initially the face region of the image ...

متن کامل

3D Face Recognition Using Radon Transform and Symbolic Factorial Discriminant Analysis

Automatic recognition of human faces is considered to be a challenging task despite significant progress in both computer vision and pattern recognition. A facial recognition system is a computer application of automatically identifying or verifying a person from a digital image or a video frame from a video source. Often, variations such as in-depth pose changes or illumination variations incr...

متن کامل

Generalization of the Jared and Ennis method of complex transmittance objects for the generation of synthetic discriminant function filters.

We present a simple method of constructing synthetic discriminant function filters optimized to take into account the modulation of liquid-crystal devices. This relaxation algorithm, a generalization of the Jared and Ennis method, is an iterative method that includes arbitrary modulations for both scene and filter, extending the problem to the complex plane. Simulated and experimental results o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008